
Lockup: A software tool to harden iOS by disabling
default lockdown services

Luis Gómez-Miralles, Joan Arnedo-Moreno
Internet Interdisciplinary Institute (IN3)

Universitat Oberta de Catalunya
Av. Carl Friedrich Gauss, 5. Parc Mediterrani de la Tecnologia

08860 Castelldefels (Barcelona), Spain
pope,jarnedo@uoc.edu

Abstract—Smartphones and mobile devices nowadays accom-
pany each of us in our pockets, holding vast amounts of personal
data. The iOS platform has gained popularity in the last years, in
particular in enterprise deployments, due to its supposed higher
level of security. Recent research has pinpointed a number of
mechanisms that are being abused today in order to compromise
the security of iOS devices. In this paper, we present Lockup, a
proof of concept tool that applies various mitigation measures in
order to protect iOS devices against those attacks.
Keywords: Security, Hardening, Privacy, Apple, iOS, iPhone,
iPad

I. INTRODUCTION

Smartphones have rapidly become ubiquitous in our life. In
barely one decade, these small devices have managed to enter
our pockets and, nowadays, accompany us at all times, storing
all kinds of personal information - often without the user’s
knowledge: emails and SMS messages, calendars, address
books, to-do lists, history of visited places, photographs, voice
memos, etc. Moreover, vendors have already started to produce
wearable devices which hold an even closer relation with their
users, gathering and quantifying diverse data about their life
habits - a tendency that will only grow in the future years with
devices such as Apple Watch and Google Glass [1].

The rise of mobile technologies has introduced great
changes in the information security landscape. Blackberry,
the platform that dominated every corporate environment for
years thanks to its security features, failed to keep up with
its competitors and by Q2 2014 its market share was below
1% [2]. In contrast, 84.7% of the devices sold in that period
were Android devices, and 11.7% were iOS devices. However,
when it comes to business environments, 67% of new devices
activated in a corporate context during the same period were
iOS ones [3].

As it tends to happen with every software product, the iOS
operating system and the core applications shipped with it
have suffered from a number of vulnerabilities in the past,
with different degrees of criticality. The most serious ones,
for instance, made it possible for remote websites to gain full
control over a device browsing them with MobileSafari, the
integrated web browser [4]. Fortunately, many of the vulner-
abilities uncovered by researchers have been dully patched
by Apple in subsequent iOS versions. However, recently,

Zdziarski [5] exposed a number of attack vectors against
iOS devices through the abuse of certain background services
available in all iOS devices. Under certain conditions, these
services can leak all kinds of personal data stored in the
device, bypassing the optional backup encryption password,
and showing no indication at all to the user.

In this paper, we present an analysis of several mitigation
techniques that can be used to reduce the attack surface
exposed by these services. As a result of this analysis, we
introduce Lockup, an accompanying software tool that we have
created to implement those measures, some of which are novel
and, to our knowledge, have not been implemented before.
This tool also serves as a proof of concept that such measure
can be deployed in an iOS device.

This paper is structured as follows. Section II provides an
overview of the iOS security architecture, and presents the
problem of potentially dangerous services that can be abused
to extract an enormous amount of user data from the device.
Section III discusses a number of possible mitigation strategies
that can be applied to enhance the device security. Section IV
presents Lockup, the software tool that we have developed in
order to implement those mitigations. Concluding the paper,
Section V summarizes the paper contributions and outlines
future work.

II. SECURITY AND TRUST IN THE IOS ENVIRONMENT

In this section, we present an overview of the main compo-
nents of the iOS security architecture and its trust model, and
the existing privacy risks. This will allow us to show that, some
of the risks originating from certain weaknesses in the iOS
trust model have an impact much higher than expected because
of a number of iOS background services, named lockdown,
which have no known legitimate purpose.

A. Remote access via device trust relationship

When it comes to sharing information with an external
device (be it a desktop computer, an alarm clock that can
play music, a car audio system, etc.) the iOS security model
works as follows. Whenever the iOS device is connected via
cable to a previously unknown computer (or another external
device), it presents a dialog on screen prompting the user
whether the computer should be trusted, as seen in Figure

1. Upon receiving the user’s consent, both devices create and
interchange a series of certificates which from that moment
will be used to authenticate each other and initiate a secure,
encrypted connection. A pairing record consisting of these
certificates is stored in well-known filesystem paths in both
the computer and the iOS device. However, There is no way
for the user of an iOS device to review the list of external
devices he has chosen to trust, or to revoke that trust - other
than to reinstall the device completely.

As exposed by [5], [14], a computer that has successfully
paired with an iOS device can initiate a connection to it and
invoke a number of services exposed via the lockdown daemon
- even wirelessly and without the user receiving any visual
indication. The same can be done from any other computer
or device, as long as the pairing record is extracted from the
trusted computer.

Unfortunately, a number of the lockdown services are de-
signed in such a manner that they may leak significant amounts
of personal information, even bypassing the user’s backup
encryption password. Given that any trusted device (alarm
clock, car stereo, etc.) gets a pairing record which gives access
to all the services, this can be exploited by either placing
malicious devices in common areas (airports, coffee shops...)
[14] or compromising trusted devices to steal the pairing
record stored in it. Then, those pairing records can be used
to establish connections to the iOS device, even over the air
through either Wi-Fi or cellular connection, in order to perform
surreptitious actions such as deploying malicious software or
extracting information from the device.

B. Sensitive iOS device services

A computer that connects to an iOS device (through a USB
cable or Wi-Fi) can invoke a series of services which, from the
iOS side, are offered through the lockdown daemon [5], [14].
These services have diverse roles, such as allowing iTunes
syncing or remote management for MDM purposes, while
others have no known purpose and seem to be the perfect
backdoors to be exploited by intelligence agencies, forensic
products, and malicious actors all alike.

The complete list of services can be explored by checking
the file /System/Library/Lockdown/Services.plist. A fresh in-
stallation of iOS 7.1.2 on an iPhone 5 exposes a total of 32
services via lockdown, of which Zdziarski [5] identified the
following ones as being valuable from a forensic standpoint:

• com.apple.file relay. Can be used to extract huge amounts
of information, bypassing the backup encryption setting.

• com.apple.pcapd. A network sniffer.
• com.apple.mobile.MCInstall. Installs managed configura-

tions, such as the ones used in MDM.
• com.apple.mobile.diagnostics relay. Diagnostics: hard-

ware state, battery level...
• com.apple.syslog relay. Various system logs.
• com.apple.iosdiagnostics.relay. Network usage statistics

per application.
• com.apple.mobile.installation proxy. Used by iTunes to

install applications.

• com.apple.mobile.house arrest. Used by iTunes to trans-
fer documents in and out of applications.

• com.apple.mobilebackup2. Used by iTunes to backup the
device.

• com.apple.mobilesync. Used by iTunes to sync certain
data such as Safari bookmarks, notes...

• com.apple.afc. Exposes the complete Media folder -
audio, photographies and videos.

• com.apple.mobile.heartbeat. Used to maintain the con-
nection to other services being accessed.

As can be seen, the list includes some potentially dangerous
services capable of capturing network traffic, installing appli-
cations to the device, or dumping the data stored in the device
while bypassing the backup encryption password - all of this
without showing any indication to the user.

Fig. 1. An iPhone prompting the user whether it should trust the connected
computer.

III. MITIGATION STRATEGIES

There are different mitigation measures that can be applied
to cope with the weaknesses introduced by the most sensitive
iOS services. We try to summarize the most relevant ones.

A. Delete existing pairing records

One way to mitigate the problem would be to control
the number of trust certificates in the iOS device. This is
the approach adopted by the unTrust tool [15]: it runs in a
computer connected to an iOS device connected via USB and
removes all pairing records existing in the device except the
one for the computer being used to execute the tool.

One drawback of this approach is that the iOS device still
keeps trusting one computer - hence there is still the risk that
the pairing record is stolen from the computer and used to
connect to the device services. In addition, if the user decides
or needs to temporarily trust an external device, away from that
computer (such as an audio system), there is no way to revoke

that trust or purge the list of trusted devices until the user can
get access to the trusted computer and execute unTrust again.

B. Limit sensitive services to USB (disable over wireless)

Another approach would be to limit the sensitive services
to run only over USB, minimizing the risk for over-the-
air attacks. The lockdown daemon, responsible for all the
sensitive services described in this paper, implements an
option (USBOnlyService) to limit certain services to USB
connections only, disabling the connection to those services
over wireless networks. However, this option is only used by
one service in iOS 7 (com.apple.webinspector, for debugging
mobile websites) and one more in iOS 8 (com.apple.pcapd,
the network sniffer).

C. Disable some services

Finally, it would be ideal to disable the most sensitive
services - something that has not been done so far.

The various security measures applied by iOS to any appli-
cation would prevent us from making these modifications. In
order to overcome this, our tool needs to bypass those security
measures using the process known as jailbreak, as will be
explained later.

D. Lock pairing with new devices

Another option worth mentioning is to block pairing with
new devices, as implemented by Zdziarski in pairlock. This
was useful up to iOS 6, given that in those versions external
devices would be trusted blindly, without the iOS device
presenting any prompt to the user. Since iOS 7 addressed this
concern by asking for user permission before trusting new
devices, pairlock has not been updated to work in iOS 7. Its
approach leaves some doors open, as it does not allow the user
to revoke existing trust relationships, nor does it address the
risk of a pairing record being stolen from a computer or other
trusted device.

IV. Lockup: IOS HARDENING AND ANTI-FORENSICS

In this paper we present Lockup, a software tool that can be
installed in devices running iOS versions 7 and 8. As a proof
of concept, it Lockup hardens the security of the device by
addressing the issue of sensitive services using three different
approaches:

1) Reducing the attack surface by disabling the most sen-
sitive services. In addition, the user is offered several
profiles, allowing him to tailor which services are pub-
lished, and enabling only those needed for the intended
use of the device. The rest are eliminated. For instance,
a user whose device is not enrolled in MDM systems
does not need to allow remote installation of software
and configuration profiles.

2) Limiting exploitation opportunities by restricting the
rest of services to USB only, eliminating over-the-air
threats. This is automatically done in most of the profiles
mentioned above.

3) Limiting trust relationships by automatically purging all
pairing records after a configurable period of time. This

constitutes an additional line of defense against attackers
capable of stealing a trusted certificate from sources such
as the user’s computer.

Lockup allows the user to choose between a series of
profiles, each one increasingly restrictive, depending on what
the user needs to do with the device at every moment. In
order to define the various profiles, we tried a number of
configurations, enabling and disabling each service selectively,
and attempting various common actions to make an iOS device
interact with other external devices. In particular, we tried the
following actions:

• Use iTunes in a Mac computer to install applications in
the iOS device.

• Use iTunes to transfer files in and out of the applications
installed in the iOS device.

• Use iTunes to perform a backup of the data stored in the
device.

• Use a bluetooth hands-free device to access the address
book of the iOS device and place calls through it.

• Use iPhoto in a Mac computer to import the device’s
camera roll.

• Use a stereo system to play the audio coming out from
the iOS device.

This list illustrates the problems of granting excessive
privileges to external devices that access the iOS device’s
lockdown services. If a user does not regularly backup to
iTunes, why should those services be exposed when the device
is connected to, say, an alarm clock? With Lockup, the user
can adjust the behavior of the device as needed.

A. Tool capabilities

The main capabilities of Lockup can be summarized as
follows.

• Controlling the device’s trust relationships, by purging
the stored pairing records; and

• Disabling certain lockdown services and preventing others
from being invoked over Wi-Fi connections, in order to
disable over-the-air attacks.

One common concern about the potential abuse of iOS
services is that iOS lacks a way to see which other devices or
computers have been paired with in the past, or to revoke those
trust relationships. If the user just hits the wrong button by
mistake, the connected device will be trusted forever. This can
pose a significant risk, especially considering the possibility of
an attacker stealing the pairing record from inside the trusted
device and using it to establish remote connections to the iOS
device.

In our solution we opted for including a background task
that will wipe all trust relationships from the iOS device after a
configurable period of time; this applies the mitigation strategy
discussed in subsection . Once that happens, connecting to that
device will require the user to confirm the trust relationship
from the iOS screen. We recommend setting this to low
values such as 5-10 minutes, which should suffice for any task
involving connection to another device - with the exception

of very long synchronization sessions with iTunes, as usually
happens when an iOS device is synced with a computer for the
first time. During our tests we observed that even values as low
as 30 seconds allow normal functioning of standard features
such as iTunes syncing; once an iTunes syncing session has
started, it will complete successfully even if the pairing record
is deleted in the middle of the process.

In addition, as we have introduced earlier in this paper, there
are sensitive services potentially very dangerous and with no
known purpose (such as com.apple.mobile.file relay, that can
be used to extract all kinds of personal information bypassing
the backup encryption protection, or com.apple.pcapd, which
can be used to turn the device into a sniffer that will capture
the network traffic it can receive), and it seems obvious to us
that these offending services should be removed from every
device.

There are also other services that, despite having a le-
gitimate purpose, can also be exploited to leak significant
amounts of personal information or inject malicious soft-
ware into the device. Examples include com.apple.mobile.
installation proxy (used by iTunes to install applications in
the device), com.apple.house arrest (used by iTunes to copy
application files from or to the device) and com.apple. mo-
bilebackup2 (used by iTunes to backup the data stored in the
device).

We propose to define different service levels and keep the
device in the most restrictive level that is suitable depending
on what the user needs at every moment – a measure that
has not been implemented before, to the authors’ knowledge.
For instance, it is not necessary to keep all the iTunes-related
services enabled unless the user wants to connect the device
to iTunes, and even then, it is not necessary to expose those
services over-the-air if the user uses a cable to sync. Similarly,
a lot of users will prefer to disable the MDM-related services,
which can be exploited to install software into their devices.
This approach applies the mitigation strategies explained in
subsections III-B and III-C.

B. Service profiles

Next, we describe the different profiles that we have im-
plemented in Lockup, with each profile being increasingly
restrictive and consequently more secure. To the knowledge
of the authors, a similar solution has not been implemented
before, neither in iOS nor in other platforms. In order to decide
which services should be disabled in each profile, we have
followed two different criteria.

On one hand, the services that we disable first are those
that pose a higher privacy risk to the user. These are, for
instance: the services that make it possible to bypass the
backup encryption password, to capture network traffic, to
deploy configuration profiles and applications to the device,
etc.

At the same time, the first services that we disable are the
ones likely to be needed by a reduced number of users. We first
disable the totally unneeded services, afterwards we disable
MDM, and then we disable other features that users may need

at particular moments (such app installation via iTunes) while
we still allow iTunes to obtain backups of the device data.

The following list details which services are disabled in each
level. Levels are incremental, meaning that any given level X
also applies all the steps performed in previos levels 1, 2, ...
X-1.

• Level 1, for MDM - disables:
– com.apple.file relay.
– com.apple.pcapd.

• Level 2, for synchronizing applications - disables:
– com.apple.mobile.MCInstall.
– com.apple.mobile.diagnostics relay.
– com.apple.syslog relay.
– com.apple.iosdiagnostics.relay.
– Sets all remaining services to USBOnly.

• Level 3, for backup - disables:
– com.apple.mobile.installation proxy.
– com.apple.mobile.house arrest.

• Level 4, for synchronizing media files - disables:
– com.apple.mobilebackup2.
– com.apple.mobilebackup.

• Level 5, for media sharing - disables:
– com.apple.mobilesync.

• Level 6, no sensitive services. In addition to all the above,
disables:

– com.apple.afc.
• Level 7, no lockdown services at all.

– Completely removes every lockdown service, includ-
ing com.apple.mobile.heartbeat.

Even in the strictest mode, the device is still capable of
interacting with external devices. In particular, in this mode
one can successfully connect the iOS device to: a hands-free
device (via bluetooth) to import the address book and place
phone calls; a Mac computer (through USB cable) to import
pictures through iPhoto; and an audio system (again, through
USB cable) to play the songs stored in the device.

C. The iOS jailbreak

The term jailbreak (also known in other platforms as
rooting) refers to the act of circumventing vendor’s restrictions
in order to run code on the device with full privileges. The
use of jailbroken devices is very popular among developers
and researchers, as it gives them much more control over the
device’s internals [7]. Although it is hard to find global data
about the number of jailbroken devices, a recent report focused
in China found that over 30% of iOS devices being used in
that country were jailbroken in January 2013 – a number that
fell to 13% by December of the same year [16]. Jailbreak
has become increasingly popular among users and there are
thousands of applications, both free and paid, that can be
installed in jailbroken devices - applications that would never
make their way into the official distribution channels, given
that they infringe the App Store’s rules in one way or another.

Examples include software emulators and all kinds of system-
wide tweaks that change the device’s global aspect [17], alter
global elements such as the Control Center or the Notification
Center [18], or inject code into other existing applications to
change their behavior [19].

In our case, we have leveraged the jailbreak technique to
disable specific lockdown services and test different connec-
tivity scenarios, and to develop and test the Lockup tool.
Other users and researchers can install it and benefit from
its features, provided that they are using an iOS version for
which a jailbreak is available. And, of course, vendors could
implement this kind of tool in future OS versions.

Given that jailbreaking a device deactivates some important
security features (code signing and sandboxing), it opens the
door to a number of threats [20], [21]. Consequently, users
must be careful about the origin of the software packages they
install in jailbroken devices. We recommend installing only the
core software packages needed by the jailbreak process itself,
and always changing the passwords of the root user as well
as the regular mobile user.

Nevertheless we believe our contribution is useful, not only
as a proof of concept implementation, but also as a real tool
that can be used in a number of real-world scenarios, for
instance in old iOS devices which no longer receive software
updates from Apple - and which are usually left with an iOS
version for which a jailbreak exists.

D. Implementation details

Lockup is designed to run in jailbroken versions of iOS
7 and 8. It can easily be ported to new major iOS versions
as soon as a jailbreak is available for them, which typically
happens a few weeks after the official iOS release. In the worst
case so far, iOS 7.0 took 95 days until a public jailbreak was
available for iOS 7; in contrast, iOS 8 was jailbroken 35 days
after its official release. It is also remarkable that many users
of jailbreak applications usually stick to an older iOS version
until a jailbreak for the new one is available.

The different service profiles are defined by creating multi-
ple copies of the /System/Library/Lockdown/Services. plist file.
In each profile, we disable an increasing number of services.
In addition, in most of the profiles, the flag USBOnlyService
is applied to sensitive services, so that these cannot be abused
over the air, either via a Wi-Fi connection, or through the
user’s cellular connection.

In order to set a profile, the user executes the command
lockup-profile. This can be done either using a terminal
application such as MobileTerminal or accessing the device via
SSH, if it has been installed. When the command is invoked,
the user is presented with a menu as shown in Figure 2. After
the user picks a profile, the corresponding service list file is
copied over /System/Library/Lockdown/Ser- vices.plist. For the
changes to take immediate effect, a SIGTERM signal is sent to
the lockdown daemon with the kill command, which makes it
restart and read its new configuration file. Additional options
allow the user to enumerate the services exposed by the present
profile and dump the whole contents of the Services.plist

file, which may be specially useful to detect and investigate
additional services that may have been installed inadvertently.

Fig. 2. Menu presented by lockup-profile.

For the periodic purging of pairing records, Lockup uses
various files. First, a shell script in charge of deleting the
pairing records is installed. Secondly, a launch daemon, which
will run the previous script periodically, is loaded through
/System/Library/LaunchDaemons/es.pope.lockup-purge.plist.
An additional script, lockup-interval, can be used to change
the interval at which pairing records are deleted (one hour by
default). Figure 3 summarizes the main components and the
interactions between them.

Fig. 3. Lockup components and main interactions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed the security and privacy
risks presented by certain background services that exist in
the iOS operating system. We have presented a number of
mitigation measures that can be used to reduce those risks.
The main contribution of this paper is Lockup, a software tool
that hardens the security of iOS devices by defining a number
of profiles which reduce the number of exposed services. In

addition, we have discussed the anti-forensic implications of
our solution, and the anti-anti-forensics countermeasures that
could be used to bypass it. Given the huge amount of personal
information that can be extracted by abusing these sensitive
services, we believe it is worth exploring this kind of solutions.
The expected rise of wearable devices will only increase the
need for solutions that enhance the devices’ security and
privacy levels.

Lockup will be released as free software so that other
researchers or developers can adapt it as they find convenient.
We also have the intention of continuing working in Lockup,
maintaining it and adding new features, such as: monitoring
and logging connection attempts to lockdown services, alerting
the user in real time; adding a graphical interface to the
software; monitoring the set of available services and alerting
the user if new services are added... It would also be possible
to integrate it with other solutions such as activator [24].
However, from a security standpoint, it would be preferable to
keep the software as simple as possible, both in terms of size
and in terms of dependencies.

The purpose of the proof-of-concept tool presented in this
paper is to fight the security risks presented by a number of
iOS unwanted services. It must be kept in mind, however,
that our solution will only work in jailbroken devices, and
the process of jailbreaking itself implies circumventing and
disabling a number of native iOS security mechanisms.

Future research work includes the possibility of creating
custom jailbreak tools that after deploying our software return
the device to its original state to the best possible extent - this
would keep most of the benefits and security features of stock
Apple devices, while avoiding exposure through unwanted
services.

ACKNOWLEDGEMENTS

This work was partly funded by the Spanish Government
through projects TIN2011-27076-C03-02 CO-PRIVACY and
SMARTGLACIS (TIN2014-57364-C2-2-R).

REFERENCES

[1] T. Starner, Wearable computing: Through the looking glass, in: Pro-
ceedings of the 2013 International Symposium on Wearable Computers,
ISWC ’13, ACM, New York, NY, USA, 2013, pp. 125–126.

[2] International Data Corporation, Worldwide quarterly mobile phone
tracker Q2 2014, International Data Group, 2014.

[3] Good Technology, Good Technology mobility index report Q2 2014,
http://media.www1.good.com/documents/rpt-mobility-index-q2-2014.
pdf (2014).

[4] N. Allegra, J. Freeman, JailbreakMe 3.0, http://jailbreakme.com (2011).
[5] J. Zdziarski., Identifying back doors, attack points, and surveillance

mechanisms in ios devices, Digital Investigation 11 (2014) 3–19.
[6] Apple Computer, App Store sales top $10 Bil-

lion in 2013, http://www.apple.com/pr/library/2014/01/
07App-Store-Sales-Top-10-Billion-in-2013.html (2014).

[7] C. Miller, D. Blazakis, D. D. Zovi, S. Esser, V. Iozzo, R. Weinmann,
iOS hacker’s handbook, Wiley, 2012.

[8] A. Masna, Camera+ pulled from the App Store over hidden feature, http:
//www.macworld.com/article/1153337/cameraplus\ pulled.html (2010).

[9] I. Fried, Emulator runs DOS, Windows on an iPad, http://www.cnet.
com/news/emulator-runs-dos-windows-on-an-ipad/ (2010).

[10] M. Rose, Arcade emulator iMAME punted out of App Store, http://www.
tuaw.com/2011/12/23/arcade-emulator-imame-punted-out-of-app-store/
(2011).

[11] M. Beasley, Rogue App Store app lets you hide built-
in apps and disable iAds, http://9to5mac.com/2013/03/11/
rogue-app-store-app-lets-you-hide-built-in-apps-and-disable-iads/
(2013).

[12] Apple Computer, Resources for IT and enterprise developers, https://
developer.apple.com/enterprise/ (2014).

[13] Apple Computer, iPhone in business, https://www.apple.com/iphone/
business/ios (2014).

[14] B. Lau, Y. Jang, C. Song, T. Wang, P. ho Chung, P. Royal, Mactans:
injecting malware into iOS devices via malicious chargers (2013).

[15] Stroz Friedberg, unTRUST, https://github.com/strozfriedberg/unTRUST
(2014).

[16] Umeng, Umeng Insight report: China mobile internet 2013 (2014).
[17] J. Freeman, WinterBoard, http://cydia.saurik.com/package/winterboard/

(2014).
[18] D. Lisiansky, CCControls, http://cydia.saurik.com/package/com.danyl.

cccontrols/ (2014).
[19] J. Freeman, Cydia Substrate, http://www.cydiasubstrate.com (2014).
[20] A. Apvrille, Inside the iOS/AdThief malware, https://www.virusbtn.com/

pdf/magazine/2014/vb201408-AdThief.pdf (2014).
[21] P. Porras, H. Sadi, V. Yegneswaran, An analysis of the ikee.b iphone

botnet, in: A. Schmidt, G. Russello, A. Lioy, N. Prasad, S. Lian
(Eds.), Security and Privacy in Mobile Information and Communi-
cation Systems, Vol. 47 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
Springer Berlin Heidelberg, 2010, pp. 141–152.

[22] K. Oestreicher, A forensically robust method for acquisition of icloud
data, Digital Investigation 11, Supplement 2 (0) (2014) S106 – S113,
fourteenth Annual {DFRWS} Conference.

[23] K. Ruan, J. Carthy, T. Kechadi, I. Baggili, Cloud forensics definitions
and critical criteria for cloud forensic capability: An overview of survey
results, Digital Investigation 10 (1) (2013) 34 – 43.

[24] R. Petrich, Activator, https://rpetri.ch/cydia/activator/ (2014).

